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Chapter 7
Other Spatial Prediction Techniques

7-1.  General

a. In this chapter, some alternative
approaches to spatial prediction are discussed.  At
the beginning of Chapter 2, the distinction between
stochastic and nonstochastic techniques for spatial
prediction was discussed.  Kriging, the main sub-
ject of this ETL, is a stochastic technique because
of the structure that is imposed in terms of an
underlying random process (the regionalized
variables) with joint probability distributions that
obey certain assumptions.  Kriging yields the
predictor that is statistically optimal in the sense
that it is the best linear unbiased predictor, given
certain assumptions that are detailed in Chapter 2. 
There are other stochastic techniques that are less
well-known than kriging in applications, such as
Markov-random-field prediction and Bayesian
nonparametric smoothing (see Cressie (1991)), but
these will not be discussed here.

b.  Several techniques that are often applied
in a nonstochastic setting will be discussed.  Tech-
niques applied in such a setting are typically
applied strictly empirically and not evaluated with
respect to rigorous statistical criteria such as mean
squared prediction error, although, as discussed in
Chapter 2, such criteria may be applied in certain
of the techniques such as simple average and trend
analysis.  It has been shown in this ETL that there
are some compelling advantages for assuming
some kind of stochastic setting.  However, the sim-
plicity of not having to postulate and justify the
structure and assumptions inherent in stochastic
analyses might be considered one advantage of
nonstochastic techniques, and such an analysis
may be perfectly adequate for certain problems.  In
addition to statistical optimality and simplicity,
there are other considerations in selecting a spatial
prediction technique, such as ease of computation,
sensitivity to data errors, and whether the predic-
tors are exact interpolators; that is, match the mea-
surements exactly at the measurement locations x ,1

x ,..., x .  The last property is one that needs to be2 n

given careful consideration by the practitioner. 
Kriging, as it is usually applied, is an exact inter-
polator.  Questions may be raised, however, about
whether this is a desirable property if it is known
that the measurements are contaminated with a
considerable amount of measurement error.  One
advantage of stochastic methods in general is that
existence of measurement error may be incorpo-
rated objectively, and, in fact, some kriging soft-
ware packages (including STATPAC) have this
feature, resulting in a surface that is not an exact
interpolator.  Several of the nonstochastic methods
discussed in this section depend on a parameter that
controls the deviation from exact interpolation. 
The ability to adjust such a parameter when using
these techniques lends a degree of flexibility to the
practitioner, but selecting the best value may not be
straightforward and may involve considerable
subjectivity on the part of the practitioner.

c. In most of the following techniques, the
predictor of the process at location x  takes the0

form of a linear combination of the measurements
at locations x , i=1, 2,..., n.  Using Z (x ) to denotei 0

~

an arbitrary predictor (the notation distinguishes
the predictors to be discussed in this section from
the kriging predictor, which is denoted by Z (x ),

~
0

the definition of Z  (x ) is
~

0

(7-1)

Although this form is the same form that is taken
by the kriging predictor, the difference is in the way
the coefficients w  are computed.i

7-2.  Global Measure of Central
Tendency (Simple Averaging)

a. The predictor for the process at any
location x  is the simple average of the measure-0

ments; that is, the weights w  are all equal and arei

given by Cressie (1991)
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This predictor represents the smoothest possible k = 1, the predictor is an exact interpolator and is
predictor surface.  In using this predictor, a certain constant on the Voronoi polygons (see section 7-5)
degree of spatial homogeneity is assumed.  No induced by the measurement locations.
attempt is made to incorporate any detectable
patterns (or trends) in the mean or variance of the c. There are several variations of this pre-
data as a function of location, and the fact that dictor.  In one such variation, a distance r may be
measurements made at points that are close to each fixed (rather than fixing k) and averages over loca-
other may be related is disregarded.  Such a pre- tions that are within distance r of x  taken.  Addi-
dictor has the advantage of being very simple to tionally, a moving-median may be used rather than
compute; it needs no estimation of a variogram or a moving average.  Sorting and testing distances
other model parameters.  The disadvantage is that can slow computations relative to obtaining the
representing the spatial field by a single value simple average, and use of medians rather than
ignores much of the relevant and interesting struc- means leads to a more resistant (to outliers)
ture that may be very helpful in improving predictor.
predictions.

b. As discussed in section 2-4, if applied in a
stochastic setting, this predictor would be optimal
(best linear unbiased) if there is no drift and if
residuals are uncorrelated and have a common a. The weights w  are (Journel and Huijbregts
variance. 1978)

7-3.  Simple Moving Average

a. Let h  be the distance of x  from x , let hi0 0 i [i0]

be the ordered (from smallest to largest) distances,
and fix 1 # k # n.  Then the weights w  arei

(Cressie 1991)

(7-3)

Thus, this predictor is the average of the measure-
ments at the k nearest locations from x .  0

b. If k is equal to n, this predictor is identical
to the simple average, with weights as given in
Equation 7-2.  A choice of k smaller than n reflects
an assumption that the predictor needs to incor-
porate more of the local fluctuation observed in the
data, or, equivalently, that measurements at loca-
tions near x  should be more informative than0

measurements at other locations in predicting z(x );0

the smaller k is, the more variable the predictor.  If

0

7-4.  Inverse-Distance Squared Weighted
Average

i

(7-4)

where again h  is the distance of x  from x .i0 0 i

b. In the simple moving average, weights are
the same, provided measurement locations are
sufficiently close to the prediction location and are
zero otherwise.  For the inverse-distance squared
method, weights are forced to decrease in a
smoother manner as distance from the prediction
location increases.  This predictor again has the
advantage of being easy to compute.  Another
feature of this predictor is that it is an exact inter-
polator.  In addition, the exponent 2 of h  may bei0

changed to any positive number, giving the user
some flexibility in determining the rate of decrease
of weights as a function of distance from x .  Isaaks0

and Srivastava (1989, pp. 257-259) present an
example illustrating the effects on weights of
changing the exponent.
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7-5.  Triangulation

a. To compute this predictor, the region R is point.
partitioned into what are referred to as Voronoi
polygons V , V ,..., V , with V  being the set of c. Computation of this predictor is slower1 2 n i

locations closer to measurement location x  than to than computation of those in sections 7-2, 7-3, andi

any other measurement location.  If any two poly- 7-4.  The predictor is an exact interpolator, and the
gons, V  and V , share a common boundary, x  and surface produced is continuous, but not differen-i j i

x  are joined with a straight line.  The collection of tiable at the edges of the triangulation.j

all such lines defines what is known as the
Delaunay triangulation.  There will be one such
triangle containing the prediction location x ; the0

vertices of this triangle, which are measurement
locations, are labelled x , x , and x .  The spatial a. In spline modeling, the measurements arej k 1

prediction at x  will be the planar interpolant interpolated using combinations of certain so-called0

through the coordinates (x , z(x )), (x , z(x )), and basis functions.  These basis functions are usuallyi j k k

(x  z(x )).  Joining x  and x , x , and x , three sub- taken to be piecewise polynomials of a certain1, 1 0 j k 1

triangles are formed.  The weights w  are (Cressie degree, say k, which is determined by the user.  Thei

1991) coefficients of these polynomials are chosen so that

(7-5)

where A  is the area of the subtriangle oppositei

vertex x .i

b. These definitions are illustrated in Fig-
ure 7-1.  In this figure, the dashed lines depict the
Voronoi polygons associated with points x , x , ...,1 2

x , and the solid lines define the Delaunay triangu-6

lation.  Vertices of the triangle containing the pre-
diction point x  are x , x , and x , and dotted lines0 1 5 6

show the subtriangles defining the associated area
A , A ,  A .  For this example, j, k, and l in the1 5 6

general Equation 7-5 are 1, 5, and 6, so the
weights assigned to points x ,  x , and x  are,1 5 6

respectively,

It is seen that the weight assigned to a point is pro-
portional to the area of the triangle opposite the

7-6.  Splines

the function values and the first k-1 derivatives
agree at the locations where they join.  The larger k
is, the smoother will be the prediction surface. 
Spline techniques are often applied in a non-
stochastic framework; in such a context they
represent a way of fitting a surface with certain
smoothness properties to measurements at a set of
locations with no explicit consideration of statisti-
cal optimality.  There is, however, a considerable
body of work in which this technique is applied in a
stochastic setting.  Splines may be used, for
example, in nonparametric regression estimation
problems (Wegman and Wright 1983).

b. A typical approach to formulating a spline
problem is to pose it as an optimization problem. 
In one special case, it is assumed that the first two
derivatives of the prediction surface exist, which is
a way of imposing a certain degree of smoothness,
and that the spline function minimizes

(7-7)

where Q is a term that depends on the first two
derivatives of the predictor surface.  The parame-
ter 0 is a nonnegative number that needs to be
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Figure 7-1.  Diagram showing Voronoi polygons

specified by the user; the value of this parameter smoothing parameter 0 to be > 0 renders the
reflects the trade-off between goodness of fit to the computational problem more complex.
data, measured by the first term, and smoothness,
as measured by Q.  If 0 is chosen to be 0, the c. Under some conditions a solution to the
spline is an exact interpolator and passes through optimization problem (Equation 7-7) may also be
all the data points.  If 0 > 0, the spline is not an obtained by a kriging algorithm if the smoothing
exact interpolator.  (Splines that are not exact parameter 0 is taken to be equal to the variance of
interpolators are referred to as smoothing splines.) measurement error and if a special form is chosen
There are a number of numerical procedures that for the covariance function.  Therefore, in this
 may be used for fitting splines, but allowing the situation, spline approximation is a special type of
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kriging.  However, the variogram that needs to be mean-squared prediction error is smallest among
used in the kriging equations to make the kriging all predictors that are linear in the measurements. 
predictor equivalent to the spline predictor is This optimality property is local, in that the mean-
determined by the basis functions selected for the squared error of predictions at unsampled locations
spline.  Because the type of basis functions used is considered one at a time is minimized, without
subjective on the part of the user, the resulting specific regard to preservation of global spatial
equivalent variogram may not be representative of features.  If, however, the actual realization z(x)
the true variogram of the data.  Because kriging could be compared to the kriged prediction surface
uses the data to indicate reasonable variogram based on n measured values, the kriged surface
choices, kriging has an important advantage over would be much smoother than the actual surface,
splines.  Another advantage of placing the problem especially in regions of sparser sampling.  Thus,
in the kriging framework is the interpretation of the the kriged surface will be a good and realistic
smoothing parameter in terms of measurement representation of reality in the sense that the n
errors.  In many cases, an objective estimate of the measured values are honored, but it will be less
magnitude of measurement error can be obtained. realistic with respect to global properties, such as
The connections between kriging and splines are overall variability.  
discussed further by Wegman and Wright (1983),
Watson (1984), and Cressie (1991). b. The purpose of simulation is to produce

7-7.  Trend-Surface Analysis

a. Trend-surface analysis is the process of by using numbers that are drawn randomly (Monte
fitting a function, such as that in Equation 2-43, Carlo) to impart variability to the simulated sur-
using least squares to determine the coefficients face, making the simulated surface more realistic in
that yield the best fit.  Computationally, trend- preserving the overall appearance of the actual
surface analysis is equivalent to universal kriging surface.  Generally speaking, simulation uses the
with an assumption that the Z*(x ) are uncorre- idea that the true value of a random surface may bei

lated.  Thus, there is no need to estimate a vario- expressed as the sum of a predicted value (which is
gram, and readily available regression packages obtained by kriging) plus a random error, which
may be used for estimating the coefficients.  As in varies spatially and depends on the random
universal kriging, polynomial surfaces are the most numbers drawn.  Generally a number of indepen-
commonly used. dent realizations will be generated, and these

b. When trend surfaces are applied in a sto- representations of reality.  
chastic setting, the resulting predictor will be opti-
mal if deviations from the surface are uncorrelated c. A simulation algorithm is said to be condi-
and have a common variance. tional if the resulting realizations agree with the

7-8.  Simulation

a. Consider again a regionalized random method of conditional simulation is known as
variable Z(x), where x is a location in a two- sequential Gaussian simulation (Deutsch and
dimensional study region R.  Kriging is an inter- Journel (1992), pp. 141-143).  Another, more com-
polation algorithm that yields spatial predictions plicated, Gaussian simulation method that is par-8Z
(x) that are best, or optimal, in the sense that has
been discussed at some length in this ETL.  The

one or more spatial surfaces (realizations) that are
more realistic in preserving global properties than
the surface produced by interpolation algorithms,
such as kriging.  These realizations are produced

realizations will be taken to be equally probable

measurements at measurement locations x , x , ...,1 2

x .  If the underlying process Z(x) is assumed to ben

Gaussian (or if a transformation may be found that
makes the process Gaussian), the most common

ticularly useful for three-dimensional simulations
because of its computational efficiency is the
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turning-bands method (Deutsch and Journel 1992, when analyzed in histogram form, approximates
Journel and Huijbregts 1978). the probability distribution of potential measure-

d. In sequential Gaussian simulation a set of 25 (2.5 percent) of the values less than the lower
grid points for which simulated values are desired end and 25 of the values larger than the upper end
is defined and the points are addressed sequentially were constructed, the interval would almost corre-
from location to location along a predetermined spond, as expected, to the 95-percent prediction
path.  At each location, a specified set of neighbor- interval to  Z (x ) - 1.96F  (x ) to Z (x ) + 1.96F
ing conditioning data is retained, including the (x ) discussed in section 2-6b.  Thus, for this single
original data and simulated grid-location values at location, the simulation has not produced much
previously traversed grid locations along the path. more information than kriging alone would have
Then, a random number is generated from a produced.  The real value of simulation, however,
Gaussian distribution with conditional mean and is that realizations not just at a single location, but
variance determined using a kriging algorithm, and at all of the grid locations jointly, are obtained. 
the value of the random number determines the These realizations can be used to calculate proba-
simulated process at this location.  The conditional bilities associated with any number of spatial loca-
Gaussian distribution used in simulation is identi- tions together.  For example, the probability that
cal to the conditional distribution discussed in the largest (maximum) contaminant value over a
section 2-6b.  An idea of the computational certain subregion is greater than a particular con-
requirements can be obtained from the fact that a centration might be assessed.  (If the word “larg-
kriging algorithm needs to be applied for each est” here were replaced with “average,” then block
simulation location.  For multiple realizations, if kriging could be used to obtain the answer.)
the path connecting the grid points is kept the
same, the kriging equations need to be solved for g. A central point that needs to be empha-
only the first simulation.  However, implementa- sized is that simulation is especially useful when
tion of this procedure needs to take into considera- probabilities associated with complicated, usually
tion the assumptions concerning the existence of nonlinear, functions of the regionalized variables
drift; the details of such an implementation are over a region need to be analyzed.  The maximum
beyond the scope of this ETL. function mentioned in the preceding paragraph is

e. A sequential algorithm like this may also sider the problem of determining placement of
be applied in the context of indicator kriging (see groundwater monitoring wells to detect and moni-
section 2-6c).  At each grid point along the path, a tor groundwater contamination emanating from a
(Bernouli) random variable taking on only two potential point source.  Given an existing set of
possible values, 0 or 1, is generated, with the rela- hydraulic-head data, kriging might be applied and
tive probability of these two values being deter- flow lines determined from resulting hydraulic-
mined by indicator kriging applied, as in the head gradients.  Intersection of the flow line from
previous paragraph, to the original observed indi- the point source with the regional boundary then
cator data and the previously simulated indicator might be used to determine monitoring well place-
values. ment.  Conditional simulation would be useful to

f. To get an idea of how simulation results well placement or to give an indication of how
might be used in a risk-assessment setting, assume many monitoring wells might be appropriate.  In
again that the underlying process is Gaussian and this case, the variable of interest, well location, is a
that 1,000 conditional realizations have been complicated function of hydraulic heads so this is a
generated.  If a single grid point x  (which is not a problem for which simulation is well-suited.  The0

measurement point) is considered, then the simu- reader may refer to Easley, Borgman, and Weber
ation has produced 1,000 values at x , which, 0

ments at that location.  If an interval with exactly

8
0 K 0 0 K

8

0

one simple example.  For another example, con-

determine uncertainty associated with location of
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(1991) for a more detailed discussion of this type hydraulic-conductivity realizations to be used as
of application.  input to a model that produces as output a set of

h. The complicated functions of interest in Easley, and Englund (1991) discuss how ground-
groundwater studies often involve physically based water modeling might be used with conditional
groundwater flow models.  Conditional simulation simulation to study the monitoring-well-placement
may be used, for example, to generate a suite of problem discussed in the preceding paragraph.

corresponding hydraulic-head realizations.  Weber,


